3.2.62 \(\int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx\) [162]

3.2.62.1 Optimal result
3.2.62.2 Mathematica [C] (warning: unable to verify)
3.2.62.3 Rubi [A] (verified)
3.2.62.4 Maple [B] (verified)
3.2.62.5 Fricas [C] (verification not implemented)
3.2.62.6 Sympy [F(-1)]
3.2.62.7 Maxima [F(-1)]
3.2.62.8 Giac [F]
3.2.62.9 Mupad [F(-1)]

3.2.62.1 Optimal result

Integrand size = 35, antiderivative size = 155 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=-\frac {4 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {(5 A-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {4 A \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}}-\frac {(5 A-C) \sin (c+d x)}{3 a^2 d \sqrt {\cos (c+d x)} (1+\cos (c+d x))}-\frac {(A+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \]

output
-4*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x 
+1/2*c),2^(1/2))/a^2/d-1/3*(5*A-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d* 
x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+4*A*sin(d*x+c)/a^2/d/ 
cos(d*x+c)^(1/2)-1/3*(5*A-C)*sin(d*x+c)/a^2/d/(1+cos(d*x+c))/cos(d*x+c)^(1 
/2)-1/3*(A+C)*sin(d*x+c)/d/(a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2)
 
3.2.62.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.84 (sec) , antiderivative size = 716, normalized size of antiderivative = 4.62 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\frac {10 A \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (a+a \cos (c+d x))^2 \sqrt {1+\cot ^2(c)}}-\frac {2 C \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (a+a \cos (c+d x))^2 \sqrt {1+\cot ^2(c)}}+\frac {\cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \left (\frac {8 A \cot \left (\frac {c}{2}\right ) \sec (c)}{d}+\frac {8 A \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{d}+\frac {2 \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{3 d}+\frac {8 A \sec (c) \sec (c+d x) \sin (d x)}{d}+\frac {2 (A+C) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{3 d}\right )}{(a+a \cos (c+d x))^2}+\frac {4 A \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{d (a+a \cos (c+d x))^2} \]

input
Integrate[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^ 
2),x]
 
output
(10*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, S 
in[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Si 
n[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan 
[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x]) 
^2*Sqrt[1 + Cot[c]^2]) - (2*C*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Hypergeometric 
PFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - Arc 
Tan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2] 
*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/( 
3*d*(a + a*Cos[c + d*x])^2*Sqrt[1 + Cot[c]^2]) + (Cos[c/2 + (d*x)/2]^4*Sqr 
t[Cos[c + d*x]]*((8*A*Cot[c/2]*Sec[c])/d + (8*A*Sec[c/2]*Sec[c/2 + (d*x)/2 
]*Sin[(d*x)/2])/d + (2*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(A*Sin[(d*x)/2] + C*S 
in[(d*x)/2]))/(3*d) + (8*A*Sec[c]*Sec[c + d*x]*Sin[d*x])/d + (2*(A + C)*Se 
c[c/2 + (d*x)/2]^2*Tan[c/2])/(3*d)))/(a + a*Cos[c + d*x])^2 + (4*A*Cos[c/2 
 + (d*x)/2]^4*Csc[c/2]*Sec[c/2]*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, C 
os[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Co 
s[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*C 
os[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d 
*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + Ar 
cTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d 
*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(d*(a + a*Cos[c + d*x])^2)
 
3.2.62.3 Rubi [A] (verified)

Time = 0.91 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.03, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.343, Rules used = {3042, 3521, 27, 3042, 3457, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 3521

\(\displaystyle \frac {\int \frac {a (7 A+C)-3 a (A-C) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a (7 A+C)-3 a (A-C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (7 A+C)-3 a (A-C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\int \frac {12 a^2 A-a^2 (5 A-C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx}{a^2}-\frac {2 (5 A-C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {12 a^2 A-a^2 (5 A-C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{a^2}-\frac {2 (5 A-C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {12 a^2 A \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx-a^2 (5 A-C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{a^2}-\frac {2 (5 A-C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {12 a^2 A \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx-a^2 (5 A-C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {2 (5 A-C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {\frac {12 a^2 A \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )-a^2 (5 A-C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {2 (5 A-C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {12 a^2 A \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )-a^2 (5 A-C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {2 (5 A-C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {12 a^2 A \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-a^2 (5 A-C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {2 (5 A-C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {12 a^2 A \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-\frac {2 a^2 (5 A-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{a^2}-\frac {2 (5 A-C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

input
Int[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^2),x]
 
output
-1/3*((A + C)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2) 
+ ((-2*(5*A - C)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])) + 
 ((-2*a^2*(5*A - C)*EllipticF[(c + d*x)/2, 2])/d + 12*a^2*A*((-2*EllipticE 
[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])))/a^2)/(6*a^ 
2)
 

3.2.62.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3521
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
 + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) 
- b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2) + C*(b* 
c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] && LtQ[m, -2^(-1)]
 
3.2.62.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(451\) vs. \(2(195)=390\).

Time = 6.48 (sec) , antiderivative size = 452, normalized size of antiderivative = 2.92

method result size
default \(-\frac {2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (5 A F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 A E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-C F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (5 A F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 A E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-C F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-48 A \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (43 A +C \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (37 A +C \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(452\)

input
int((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+cos(d*x+c)*a)^2,x,method=_RETUR 
NVERBOSE)
 
output
-1/6*(2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2* 
sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(5*A*EllipticF(cos(1/2*d* 
x+1/2*c),2^(1/2))-12*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-C*EllipticF(c 
os(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-2*(sin 
(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+ 
1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(5*A*EllipticF(cos(1/2*d*x+1/2*c),2^( 
1/2))-12*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-C*EllipticF(cos(1/2*d*x+1 
/2*c),2^(1/2)))*cos(1/2*d*x+1/2*c)-48*A*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d 
*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^6+2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(43*A+C)*sin(1/2*d*x+1/2*c)^4-(-2*sin(1/2*d*x+1/2*c)^ 
4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(37*A+C)*sin(1/2*d*x+1/2*c)^2)/a^2/cos(1/2*d 
*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d 
*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.2.62.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 367, normalized size of antiderivative = 2.37 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\frac {2 \, {\left (12 \, A \cos \left (d x + c\right )^{2} + {\left (19 \, A + C\right )} \cos \left (d x + c\right ) + 6 \, A\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (\sqrt {2} {\left (5 i \, A - i \, C\right )} \cos \left (d x + c\right )^{3} - 2 \, \sqrt {2} {\left (-5 i \, A + i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (5 i \, A - i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (-5 i \, A + i \, C\right )} \cos \left (d x + c\right )^{3} - 2 \, \sqrt {2} {\left (5 i \, A - i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-5 i \, A + i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 12 \, {\left (i \, \sqrt {2} A \cos \left (d x + c\right )^{3} + 2 i \, \sqrt {2} A \cos \left (d x + c\right )^{2} + i \, \sqrt {2} A \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 12 \, {\left (-i \, \sqrt {2} A \cos \left (d x + c\right )^{3} - 2 i \, \sqrt {2} A \cos \left (d x + c\right )^{2} - i \, \sqrt {2} A \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} + 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}} \]

input
integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algori 
thm="fricas")
 
output
1/6*(2*(12*A*cos(d*x + c)^2 + (19*A + C)*cos(d*x + c) + 6*A)*sqrt(cos(d*x 
+ c))*sin(d*x + c) + (sqrt(2)*(5*I*A - I*C)*cos(d*x + c)^3 - 2*sqrt(2)*(-5 
*I*A + I*C)*cos(d*x + c)^2 + sqrt(2)*(5*I*A - I*C)*cos(d*x + c))*weierstra 
ssPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + (sqrt(2)*(-5*I*A + I*C) 
*cos(d*x + c)^3 - 2*sqrt(2)*(5*I*A - I*C)*cos(d*x + c)^2 + sqrt(2)*(-5*I*A 
 + I*C)*cos(d*x + c))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x 
+ c)) - 12*(I*sqrt(2)*A*cos(d*x + c)^3 + 2*I*sqrt(2)*A*cos(d*x + c)^2 + I* 
sqrt(2)*A*cos(d*x + c))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, 
cos(d*x + c) + I*sin(d*x + c))) - 12*(-I*sqrt(2)*A*cos(d*x + c)^3 - 2*I*sq 
rt(2)*A*cos(d*x + c)^2 - I*sqrt(2)*A*cos(d*x + c))*weierstrassZeta(-4, 0, 
weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^2*d*cos(d*x 
 + c)^3 + 2*a^2*d*cos(d*x + c)^2 + a^2*d*cos(d*x + c))
 
3.2.62.6 Sympy [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate((A+C*cos(d*x+c)**2)/cos(d*x+c)**(3/2)/(a+a*cos(d*x+c))**2,x)
 
output
Timed out
 
3.2.62.7 Maxima [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algori 
thm="maxima")
 
output
Timed out
 
3.2.62.8 Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algori 
thm="giac")
 
output
integrate((C*cos(d*x + c)^2 + A)/((a*cos(d*x + c) + a)^2*cos(d*x + c)^(3/2 
)), x)
 
3.2.62.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

input
int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^2),x)
 
output
int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^2), x)